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Abstract

For identifying dielectric targets buried in a lossy dielectric such as soil, one can use the natural

frequencies as a signature. However, these are dependent not only on the constitutive parameters of the

target, but also on those of the surrounding medium. For frequencies above the relaxation frequency of

the medium (the high-frequency window) and for the relative dielectric constant r=, of the target (relative

to the external medium) sufficiently small one can evaluate the natural frequencies as perturbations based

on the asymptotics for -,r -4 0. This gives a set of external resonances dominated by the external medium

parameters, and a set of internal resonances dominated by the internal medium parameters. The latter

are cavity resonances with damping from the external medium proportional to Er
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I. Introduction

Identification of buried targets using electromagnetic fields relies fundamentally on the

differences of the constitutive parameters of the buried target from those of the surrounding medium.

Previous papers have considered the identification of such targets based on the singularity expansion

method (SEM) involving complex natural frequencies sa and various properties of the pole residues.

Perfectly conducting targets have their SEM parameters scale in a simple way based on their free-space

values [5]. Highly conducting targets have a set of negative real sa based on the low-frequency diffusion

of magnetic fields in the target [6]; the magnetic polarizability dyadic has real eigenvectors which are

aligned according to any symmetry planes and axes the target may have [7].

The present paper considers another class of buried targets: dielectric targets as in fig. 1.1. In this

case the permeability of the target and the surrounding medium are assumed to the same, i.e., go, the

permeability of free space. The conductivity of the target is assumed zero, while that of the surrounding

medium, al , is assumed non-zero, such as might characterize typical soils (say 10-3 to 10-2 S/m), sea

water (4 S/m), etc. Here is a difference one might exploit by application of a DC electric potential

between earthed conductors and observing the variation of the electric field tangential to the ground

surface. However, other items such as rocks can give similar perturbation of the static electric field.

Assuming that the permitivity E2 of the target is succinctly different from e1 of the surrounding

medium, then one may also consider the complex resonances sa which occur for wavelengths of the

order of the target size (or less) in the target as well as in the surrounding medium. This can be a

complicated problem but one worth understanding due to its potential significance for target

identification. Define

Er 2 (1.1)
El

as the relative dielectric constant of the target referenced to the external medium. With G2 as about 2e,

or 3 e and typical soil perminttivities (in the 100 MHz regime) as about 10 E, then one might think of Er

as small compared to 1.0 and approximate accordingly. If the external medium is water then c1 is about

81 E0 and the approximation is even better. In soil the water content also has an important influence on

E1 . Of course, one can consider the opposite approximation of Er >> 1, but this may not be of as great

practical significance. For the present discussion the dielectric target is also considered uniform and

isotropic; this is a case of interest and is a logical step before considering inhomogeneous and/or an

isotropic dielectrics.
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Fig. 1.1 Buried Dielectric Target
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The important parameters for wave propagation in the two media are the propagation constants

=j [SU0 [Ul + SC=1]]i = 4VE I"
I S11

propagation constant in external medium

Y2 =So E2

propagation constant in target (1.2)
- Laplace transform (two - sided) with respect to time

s = 12 + jo - complex frequency
Laplace - transform variable

and wave impedances

1 1

[ sM 120 _ lb[1 ~l
[ 1='S+sE 2 Eo 1 = S-l]

wave impedance in external medium (1.3)
Z2 =go4•E

- PGo

wave impedance in target

These have convenient combinations as

71 71 = Sgo = 72 Z2

-- a" + S E1  (1.4)
21
ý2

-= SE 2z 2

Note that differences between the two media do not appear in the products but rather in the ratios above.

For later use we also have

Z Y21

and note that small Er implies large I 4jo).
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So now consider some appropriate approximations that we can use later in canonical problems.

Small •r, corresponding to large ý or small 71, can be thought of as a perturbation from the condition

of an electric boundary (perfectly conducting sheet) around the target (for consideration of the internal

resonances). (Conversely small ý corresponds to the case of a magnetic boundary around the target.) So

we can start from the simpler case of a lossless cavity and see how the external medium changes

(especially dampens) these resonances to positions away from the jow axis.

There is also the consideration of the relative propagation speeds in the two media as

1*Z- = [1. ýIi [i+
S1

s - 1
V2ý = =[lt E2 ] 2 (1.6)

Y2
1

V 2 Er + Ce1 J

For the case of relatively small ý€j (small Ed) we have the well-known Brewster phenomenon for

transmission of waves from the target to the external medium (total transmission if al = 0) provided the

wave in the target is E (or TM) polarized with respect to the boundary (4 parallel to the boundary). For

such waves propagating with angles of incidence (with respect to the boundary) near the Brewster angle

there is negligible reflection of the wave back into the target to maintain the resonance and extremely

high damping occurs. One then might expect H (or TE ) conditions for waves at the boundary to be

associated with resonant modes that are in general less damped by the external medium (again, for small
Er).

With these general physical considerations in mind let us now consider some specific geometries

to see what they can tell us.
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II. Infinite Dielectric Slab at Normal Incidence

Consider the canonical geometry of an infinite dielectric slab of thickness 1, embedded in a lossy

dielectric medium as in fig. 2.1. Strictly speaking such an infinite slab does not have natural frequencies

since the pole locations are functions of the direction of incidence. Of course we are concerned with

finite-size targets, so let us consider the case of normal incidence as an approximate way to model some

of the poles of a slab with finite dimensions (albeit large compared to /) transverse to the direction of

incidence.

This case of normal incidence is like a transmission-line calculation with the electric field taking
.-4

the role of voltage and the magnetic field that of current. The polarization 1 p of the electric field is

parallel to the two interfaces with

-4 -4
lp . lz = 0 (2.1)

1 z M direction of incidence

The magnetic field is polarized in the direction 1 z x I p for right (+z) propagating waves. Note that this

TEM incident wave has both electric and magnetic fields parallel to the surfaces of the scatterer. As such

it is a special case which is both TE and TM.

Atz = t we have

T- 2Z 1  E E [i2-il]I = 1 + R,
Z1 + Z2  E [,s) (2.2)

Z1 - i = E2 (s) 2i 22

Z1 + Z2  1+ E+(S)

With this, go now to the first interface at z = 0 and obtain

6



A10 , 1 , o1 ,C-2 .o ,71, 61

Z1 (s) Z2 2 1 (s)

0 OOZ,

Eo7(s) -'p eyZ El(s)f(s) lp e-2Z Et(s)f(s) 1 p e-yz

T'r(s)7(s) lp eriz •E2 (s)f(s) 1 p e7 2Z

Fig. 2.1 Infinite Dielectric Slab in External Lossy Dielectric with Normal Wave Incidence
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E _ . - 7-
7 n - 2j-, + 2 1 -2 f2 l

= + E 2  1+ eZ2 (2.3)k k2 1_-R Re -2i2l

Z2  Z2

cosh(i 21) + • sirnh(5 2 )

=z2 sinh(W2t) + • cosh(ý2 t)

from which we find the reflection or backscattering coefficient as

Y~2

Z2

[ý 2- 1] sinh(ý2 t)

2 cosW(1) + [ý2 + 1] sinh(? 2e) (2.4)

-1 as 0
0-4 0as i 1

1 as ..

The incident wave has an arbitrary waveform f(s) (or f(t)) which appears in all subsequent waves, but is

not important for present considerations.

The poles (indicated by argument s = sa) are at

o = 2(s•)+1
0 - ( + coth(W2 (sa)t) (2.5)

2•(sa)

For large ' or small cr there is a limiting form given by

TI -VFPoC=2 i

0 = sinh (ý2(s) e)= sinh (s(0 ))

0 = sin (og)Te) (2.6)

(a) = t(a)

O) (4°)Te = nlr for n 2,...
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Note that, as a limiting case,

(s = 0 (2.7)

Continuing the expansion let

s=-= sa) + A s (2.8)

and note that

cosh(Sa2 T)=COS(O~) I~ =cos(n 7r)

= )" (2.9)

sinh(sa T1) = (-1)n sinh(Asa TI)

cosh(sa TA) = (_)n cosh(A sa TI)

Then rewrite (2.5) as

0 = 2 + coth(Aas TI)
c(s ') (2.10)

AsaTI = -arctanh[L I(sa)-

Expand for small arguments (large ) as

As Te - (sa) + 0ý'Sa I = (sa)+ 1 (2.11)

-'-(sa) + O('-3(s5)) as ý(sa)-4--

Now write

g (sa) = iv(sing[1 + O(Asa)] as Asa 40 (2.12)

giving
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As T, (SO)) +O0((As, T,)2) + (3(a

as a(s ) -4- and AscITI-4O (2.13)

- -~1(~~) + 0(ý-2(S(O)))a

Consider now the effect of the external medium on these pole locations. Recall from (1.5)

1 - 1

a = (0)1 + (2.14)

L Sa J

Provided that frequencies of interest are in the high-frequency window [5,10], this implies

O>>1

- E1 - " ar C + 0[( J2  (2.15)

as -4 0
Sa E1

The limiting case of a pure dielectric external medium (a1 and E1 real) gives

1

AsaT =- j + O(Er) as r -40 (2.16)

showing a significant shift to the left (damping) in the s plane. Comparing to the unperturbed resonance

in (2.6) gives

1

(0f• 2 + O(Gr) as Er--4 0 (2.17)
o()a n•r

For er of order, say 0.25, the lowest resonance is shifted to the left by a relative amount 1/(2-n). Including

the conductivity of the external medium we have
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As 11+ 11 +0( 011 01;(0) E (O ) El (2.18)

as al -- 0 and ý(sa)-*oo
as•")a-E

In this more general form we see an additional correction in that Asa Te has a small negative imaginary

part (with positive co() ) moving the o part (imaginary part) of the poles closer to the origin.

Looking at these results we find that the imaginary part of these poles is not changed much by

the external medium (for small er), provided that the poles occur at frequencies large compared to

oa / El. The real part (damping) of the pole is, however, significantly affected by -,., the amount of

damping being a measure of cr in a simple (but approximate) scaling relationship.

For completeness the reflection coefficient can be represented near one of these poles by

5,0 -? as s --4 sa
s - sa (2.19)

77a -coupling coefficient

For small Asa in (2.8) we have from (2.4)

77 [ý I(Sa) - 1] sinh (sa TI)
ds [2 ý(s) cosh(sTI) + [ 2 (S) + 1] sinh(sTj)] _s

2da( + [) (Sao)+ ]Ti + O((Asa) 2 ) (2.20)

2 () + a~(()) ]T

as Asa -4 0

Neglecting the conductivity a1 of the external medium so that • is not a function of s gives

Ila 2 A~a + (Aa2=2+1 (2.21)

1- Er Asa + O((Asa)2) as Asa-)0
I1+Er

with Asa as in (2.16).
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III. Dielectric Sphere

As indicated in fig. 3.1, consider a spherical scatterer (radius a) with properties of the two media

as discussed in Section I. Taking the results from [41 we have an incident plane wave in the usual

spherical (r, 0, 0) coordinates as

~ (nc) -E (r,s) = E, f(s) lx eyZ

2n1-Mn,l,o(y1-r) +Nn,i,e(71"•

n=2

E) _+ E- (3.1)
H (r,s) = e17sfZ(s) lye-y"

Z, (s)

E 7(s) ~ _ 2n+1 Mn(1)r Nnlo(y r)I
21(s) n n(n+1)

n=l

The vector wave functions are

Mn, m,a(, r) = fn")(yr) -Rn,m,a(0,0)

= -- VxNn,m,a(y r)

T) =_ __+1 [ yr fA ))( r)] (3.2)

Nn,ma(y7) =r) P,,,(o,) ryr Qnm,a(0 ,)

1 X Mn,m,a(y )

the spherical harmonics are

Ynmo((O,O) = Yn,m,O(O,)= P'r (cos(O))s

Pn,m,a(0,0) = Yn,m,c(O,()lr (3.3)

-4 -4 -
Qn,m,a(O,0) = Vo,OYn, ,a(O,q) = 1 r X Rn,rm,a(O,'P)
-4a -4- -4} --4

Rn,m,a(O,O) = V0,0 X Pn,m,u(O,O?) = r x Qn,m,a(0, P)

and the modified spherical Bessel functions are
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z,(inc)

4(inc) direction
H®

of incidence Y
PA1 El al7/.4, ,1 ,rr

cylindrical coordinates x = Tcos (p), y = TPsin (o)

spherical coordinates z = rcos(0) , T = rsin(0)

Fig. 3.1 Dielectric Sphere in External Lossy Dielectric
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f,')• ,= in(C) analytic at C =0 for incident wave

f =(2) k,((') for outgoing wave (3.4)

f,(3)(= kn(-C) for incoming wave

where a prime is used to indicate a derivative with respect to the argument of these functions. Additional
details concerning these functions are found in [4].

Similarly expand the scattered fields (medium 1) as

(SO) E . (2) (2) 1
H (r , s) = .,7(s). (-1)n'(l 2n+1 an Mn,i,o(-, 0)+ n Nn,i,e(• 1 r)

H (s) =h.74)n(n+1--- Mn,Je(ýl r ) + an Nn,Lo(ý' r
Z,() n=1

The fields internal to the target (medium 2) take the form

(sc) 1 (, 2n+1F-M,,(r -1
E (rs) = EOf(s) n(=1)n + -) rn Mn,+,o( 0 d+n Nn,i,e(ý 2 r)

(sc) (3.6)
(SO) ____ 7'' n 2n+I[41 )2

H (-r", s) = Z- 4 (s) n(n+ 1) dn Mn,l,e(2 -r4) + 3 Nnl,o(ý 2 r)
2() n=1

Matching tangential electric field on r = a gives

in(?ia) + ank(ýa = Cn in(i 2a)

[•1a in(Yla)] + bn [jja kn(ýja)] dn [j 2 a in(Q2a)] (3.7)

r1a -la Y2a

Matching tangential magnetic field on r = a gives

2()[in(ýja) + En kn(ja) aý in(i 2a)2 1(s) -fZ 
38

1 [Fra in(ija)]} [5Ia kn(a) 1 - [2ai(2a)] (3.8)

s y•a + an = Cn y2a
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Solving forst for Fn and dn as

F, =[1)n(5ita) + a.k~~)

- 2a I[ýja in(iia)] + an[jja kn(ija)]

df= n~2 )[in(5jia) + b. kn(ýia)J (3.9)

•"-i.(ý2a)

7 2a F[ijain(Qia)] + '['ýakn~ija)]1
__ [ ) [ ma )+ ya • -ja

allows us to find the required coefficients an and bn for the scattered field as

-'2a i.(' 2 a) [j1a in(,ia)]

a[i 2a in(i 2a)] ma(3.10)[kn (5ja) - ý[2a in Q2a)][j kYitz]ý2a n__a), [jj inQl)],i.(Qa) - t[ (•)

It is the poles of these coefficients which are the poles of the scattered fields in (3.5). Note that the

an correspond to H (or TE ) modes, and the bn correspond to E (or TM ) modes.

Consider the special case of cr = 0 or = c, The interior modes are those of a dielectric

sphere surrounded by an electric (or perfectly conducting) boundary on r = a. Viewed from the exterior

medium the dielectric sphere appears to present an infinite sheet impedance (magnetic boundary) to the

external waves. So we can think of the scattering poles as being of two kinds, external and internal. For

the external poles then away from the roots of (Q2 a) and [ý2 a (Q2 a)] we have
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-- [a i ,(jia)J as --
=-[jja kn(jia)] (3.11)

kn (5a)

Defining a parameter

1

r(1)=- ja = [syuo(a" +S E)]Ta (3.12)

then we have the natural frequencies associated with the roots

n 0 (3.13)

r (1,H) - roots for external H (or TE)modes

x - roots for external E (or TM )modes

Note that the roots for H modes correspond to those for E-modes for scattering from a perfectly

conducting sphere, and similarly E modes correspond to H modes for scattering from a perfectly

conducting sphere [2,3). Having determined these roots, then (3.12) can be used to determine the external

natural frequencies s,). This is the same scaling relationship as in [5] showing how these natural

frequencies depend on the external-medium parameters. With the results from the perfectly conducting

sphere well known [2,31, these external natural frequencies are known to be highly damped, i.e.

significantly to the left in the s plane. For non-zero t, this is of course only an approximation.

The interior natural frequencies are found by reorganizing (3.10) as

an - [2ain(j
2 a)] in(ý 2 a)- ý2a in(i2a) [?ia in(ýia)] ]

S[ý2a in('2a)] kn(jja)- ý2a in(j 2 a) [ a
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__________ i(iia)]

b [['2ain(j 2a)] in(fia) - 2a in(i 2a) [jja kin(ýa)j

Keeping away from s = 0, note that the interior resonances are on the jow axis away from the roots of the

functions of 51a which are in the left half plane (the exterior resonances). Letting ý be large (but not

infinite) we see that the roots of the two denominators above are not cancelled by zeros of the

numerators. Define a parameter

2 2a = SýYo E2 (3.15)

for the internal resonances. Now let ý -c-- to give the roots

in (ra2,H)) =0

[r-'2,E) in (,(r2,E))] 0 (3.16)
2E) roots for internal H (or TE) modes

F(2'E) a roots for internal E (or TM ) modes

For these internal resonances the boundary condition on r = a is approximately that of a perfect electric

conductor (in contradistinction to the case of the external resonances). As such these ra s are imaginary

numbers corresponding to sa on the jw axis.

Since ý is finite in practice the natural frequencies are perturbed from their positions in the s

plane established by (3.13) and (3.16) and the constitutive parameters of the appropriate medium. The

exterior resonances in (3.13) already exhibit damping, but the exterior resonances in (3.16) are undamped.

So consider the damping of the interior resonances via a perturbation analysis of the poles in (3.14). Note

the Wronskian relations [2,4,9]

W [in(C), k,() in (C) k,'(C) - i'(C) kn~ M C- '( .7(3.17)

the Riccati-Bessel equation
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C 2_ c 2 [ C_1__ _ 0 (3 .1 8 )

and the large argument approximations

(C)] e [ 1+ 0 ( C -1)] as C- > -(3.19)

[eCKn(O] -e-eT[+o(C-)j as --

Consider first the interior magnetic modes. Define

2a sTa (3.20)
sMHO)Ta r_•2,H)

s(2,H) S(2,H,O) + A5 2H

so that we need the perturbation As. of the interior natural frequencies due to finite •. Then from the

denominator of an in (3.14) write

(,2a in (r 2 a) AsH, Ta.F2Hlnk,,) + O((AS,H))2)s AS2,H)

S(_(3.21)
1a aA1aSkn2a] t- 0 as ---H 0

a [yja k.(Y2a)] ( H)T)

For some chosen internal resonance sa2H), as ý--4 - then ?1a -4 , from (1.5) and a large argument

approximation of the Bessel functions is appropriate. From (3.19) we have

H'H)T =1-+ýO(-2) + O(('(2,H)Ta)2)

as ý --4 - and As('H)-> (3.22)

=-=+ 0(ý2 as 0

where ý is now evaluated at s~a 2 ,H0), the unperturbed resonance. Substituting for • from (2.15) for

a 1 0 gives
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1
A 2 'r)'=E2 +O(Er) (3.23)

just as for the slab in (2.16). Including cr 1 gives, as in (2.18), a small change in the ja part.

For the interior electric modes define

(24,E,O) T r.( 2,E)s 7' a (3.24)
s(2,E) - (2,,O) + AS(2,E)Sa 5a a

From the denominator of b, in (3.14) write

25a in(i2a)} - s 2,)T[ra(2,E) in(rax2/E))I + as&2,)2 &s(2 E) 0

(2,E) ra(, EnI (r 1. 1,rE) ) fia ~kr(a)÷T (3.25)

rL(,, E)2r[, J +.*la] C0IIA.(2,E) T\2E

, r,(,2 )2 + (n +1) y"a k,,(ya) a as ASa -

where (3.18) has been used to simplify the result. For some chosen internal resonance sa' ) as -- 0

then ýIa ---) - and the Bessel functions are approximated to give

as 4 and S(2,?) __.4 (3.26)

=- (2,E)2 + n(n +1)

where & is now evaluated at s.'H,°) the unperturbed resonance. Substituting for 4 from (2.15) for

a, = 0 gives

T 1 (2,E) 2

+ +O(Er) (3.27)

S =-•r()1 + n(n+1)
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including a, modifies this result as in (2.18) with the inclusion of the new factor involving r (2,E)2 . Notea

that

r(2,E)2 <- n(n+l)

r '(2, E) 2 (3.28)

ra(2,E)2 +1

since all the roots are imaginary and larger than n(n + 1) in magnitude [1, 91. Note that the lower order

2, )2
resonances (smaller I ra( I) give more damping for the E modes, and the E-mode damping is greater

than the H-mode damping. Furthermore, for a given n the lower order resonances have greater

damping.
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IV. General Properties of External Resonances

Considering the approximations concerning the dielectric sphere one can see some of the

properties of a general dielectric target embedded in a medium of higher permittivity. For the external

resonances the limit as ý -- - (or Er-- 0 ) makes the surface S of the target (of volume V) behave as a

perfect magnetic conductor (infinite surface impedance).

Letting S be a perfect magnetic conductor one next considers the dual problem in which the

electric and magnetic fields are interchanged [8]. In the dual problem S is a perfect electric conductor.

The propagation constant j 1(s) is unchanged in the transformation and it is certain characteristic values

of j1 that correspond to the natural frequencies. As such the technique in [5] can now be applied. One

can use the natural frequencies determined in free space (say sa)) to datermine these propagation

constants and then scale using the external medium parameters as

4AEa 1 9 (4.1)

From an experimental point of view one can then take a dielectric target and cover or coat it with

a metal foil or layer. In a scattering range (free space) determine the s, for the external resonances, and

then scale to find the s•)in the medium of interest. Note that since this is a dual problem the dependence

of the pole residues (coupling vectors) on polarization is rotated by 7c/2 due to the interchange of electric

and magnetic fields.

Of course, this procedure only gives the unperturbed external resonances, i.e. in the limit as
- (or Er--0).
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V. General Properties of Internal Resonances

As • - c, (or E.r- 0 )the target interior V behaves as though S were a perfectly conducting

sheet. This gives, as the starting point, the modes of a lossless cavity. Since • is finite, loss (damping) is

introduced into the corresponding natural frequencies sct2, giving these a negative real part. As shown

in both the slab and sphere scattering

1

Re[s ?)]T=-Ce2 + O(Er) as E,-0O

c>O

C M dimensionless parameter depending on mode and target shape

T a some characteristic time associated with propagation through the (5.1)
target (in medium 2, the target medium)

There is another small correction to Im[s?)] proportional to- •r C l/(Wca0 El), but this is relatively

unimportant in many cases of interest in which one is operating in the high-frequency window

(a /(aa C1 )<<i).

From an experimental point of view one can take a dielectric target and cover or coat it with a

metal foil or layer (as in the previous section). Then through one or more small holes one can couple a

small probe, the input impedance of which can be measured as a function of frequency to determine the

unperturbed interior resonances. The use of both electric and magnetic probes can be used to sort out

mode types. One can also place this covered target with one or more small holes in a scattering range to

determine the internal resonant frequencies. Note that the hole locations are important in that a probe

should not be placed at a null in the mode of interest (so that one can effectively excite the mode).

To determine the damping of these interior modes the dielectric target can be placed in a medium

of known el (> E2 ) for a scattering measurement. In general one will want to know the damping over

some range of r 1 . This can be accomplished to some degree by variation of the water content of the soil.

Thereby the parameters in (5.1) can be determined, noting the asymptotic nature of this formula.
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VI. Concluding Remarks

Identifying dielectric targets (insulating) in a lossy external dielectric (such as soil) requires first

that the contrast between the two media be sufficiently large that one can detect the presence of the target

in a scattering experiment. In some cases (such as by wetting down the soil) one might even increase the

contrast for this purpose.

For our present considerations the permittivity of the target is taken as small compared to that of

the external medium (Er < < 1). This leads to an appropriate set of asymptotic results for general target

shapes, based in part on canonical geometries (infinite slab and sphere). As such the results are

approximate, but useful, for identifying buried dielectric targets.
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